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Abstract 

The application of hydrostatic pressure to crystals in 
which some atoms occupy sites with polar point- 
group symmetry causes the position coordinates of 
these atoms to change. This phenomenon is here 
related to inner compressibility tensors. These arise 
naturally in the theory of inner elasticity, where they 
are linear combinations of the macroscopic linear 
compressibilities weighted by components of the 
internal strain tensors, and they indicate the ease with 
which the separation between pairs of sublattices may 
change under pressure. The form of the inner com- 
pressibility tensors is presented for eleven simple 
crystal structures involving up to four atoms in the 
basis. Finally, the inner compressibilities and con- 
straining equations for components of the internal 
strain are obtained from the pressure dependence of 
the structure of the elements As, Sb, Bi, Se, Te and I. 

Introduction 

A recent study of the effect of stress on the structure 
factors of crystals in which some atoms occupy sites 
lacking inversion symmetry was principally devoted 
to uniaxial stress in twenty simple crystal structures 
(Cousins, 1983, hereafter referred to as C). It was 
shown that the key quantities determining the crystal 
response are the inner compliance tensors: products 
of internal strain tensors and the macroscopic elastic 
compliance tensor. 

In this paper the effect of hydrostatic pressure on 
the structure factors of simple crystals is examined. 
The key quantities in this case prove to be linear 
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combinations of components of the inner compliance 
tensors and these are termed inner compressibilities 
by analogy with the definition of bulk compressibility. 

The structures affected are those in which the point 
symmetry of at least one set of equivalent atoms 
belongs to one of the ten polar point groups: 1, m, 
2, 2ram, 4, 4ram, 3, 3m, 6 and 6ram. This is because 
the coordinates of such atoms are not totally fixed: 
eight of the point groups have one degree of freedom, 
m has two and 1 has three. The value of a free 
parameter in the unstressed crystal will generally 
change when the crystal is subject to hydrostatic 
pressure. In a study of the structure of arsenic under 
pressure Morosin & Schirber (1972) remark that the 
variation of u with p is not given by elastic constants. 
In the strict sense of macroscopic elastic constants 
this is true, but when attention is paid to the interac- 
tions between sublattices, as in inner elasticity theory 
(Cousins, 1978), it is found that du/dp is given by 
the quantities that are here designated inner com- 
pressibilities. This is shown in § 1 and formal results 
are presented for eleven of the structures treated in C. 

Two strategies for determining the inner compressi- 
bility are discussed in § 2 and the independent com- 
ponents for six elements are presented in § 3. In § 4 
the connection between the inner compressibility, the 
internal strain and the macroscopic linear compress- 
ibilities is made explicit for the six elements treated 
in the previous section. 

1. Inner compressibility and the pressure derivatives of 
atomic position coordinates 

If a crystal consists of n atoms per lattice point sited 
at positions x ~' (a = 1, 2, . . . ,  n) and having form fac- 
tors fa(O, )t), the square of the structure factor takes 
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the form 
n ( n  -- I ) / 2  

[F(H)I2= ~ {f,,(O,A)}2+2 ~. g,~(O,A)cosx~, 
a = l  7 r = l  

(1) 

where 1r is one of the n ( n -  1)/2 interlattice indices 
defined by 1 r = a + ( f l - a - 1 ) ( 2 n - f l + a ) / 2  with 
fl > a, g,~(O, A )-- f,,(O, A )ft3(O, A) and 

X~ = 2~-H. (Ax)= = 2~rH. (x~ -x~) .  (2) 

Note that where ~r is a factor in an expression it has 
its usual meaning of 3" 14159 . . . .  

The pressure derivative of (1) can be approached 
in two different ways. Firstly, the line developed in 
C may be followed in which case the phase g~ is 
augmented by ~ under the application of a general 
stress or. The new phase is given by 

Xh~=X~+Q~, (3) 

where 

~ =  2,rrHiA~SsKCrK. (4) 

In (4) A '~ is an internal strain tensor, S is the elastic 
compliance tensor and summation over repeated sub- 
scripts is assumed. For hydrostatic pressure CrK = 
--pSK, where 8 r = l  if K = l ,  2 or 3 and is zero 
otherwise. It is possible to remove compensating 
length factors from H and A '~ by introducing h -  aH 
and A ~ -  (1/a)A~,  whereupon (4) becomes 

~b~t = --2 7rphi,4~ SaK~r. (5) 

In C the product ,4~SjK was written -X~'K and was 
termed the inner compliance. Equation (5) indicates 
that it is possible to go a step further and to define 
inner compressibilities through 

Tt" 
K T =  .,X,~: 8K = .,X~ +.,X,'~ +-,X,3 (6) 

and to write (5) as 

~b ~ = - 2  zrph~K ~ (7) 

for the pressure-induced increment to the phase. 
The second approach is to recognize that (3) is the 

Taylor expansion of Xh '~ to two terms, so that 6~- -  
p(dx~/dp)o. Now X~ is not a function of the absolute 
cell parameters but only of the atomic position coor- 
dinates. Thus if compensating length factors are again 
used (2) becomes 

X~ = 2 rrh, ( Ax) , /  a (8) 

so that 

(9) 

and thus 

(10) 

From the comparison of (7) and (10) it can be seen 
that 

K~ = - d---P o" (11) 

This is the central result that was to be established. 
Certain points need to be made clear. Firstly, (Ax)7 

represents a Cartesian component of (Ax) '~ and hj a 
Cartesian component of the reduced reflection vector. 
This is necessary because the tensors involved in the 
description of elasticity are all Cartesian. Secondly, 
the crystal structures to be discussed relate to rhom- 
bohedral, hexagonal, orthorhombic and tetragonal 
cells so that the choice of a needs careful consider- 
ation. For orthorhombic, tetragonal and hexagonal 
systems it is the length of the cell edge in the Ox~ 
direction, i.e. a = lall. In the rhombohedral cell all 
edges have the same length a R = la i l  and the angle 
between edges is the same, a. The value of a is then 
flaR where f12 = 2(I - cos a) /3 .  

Table l displays the form of the inner compressibil- 
ity tensor for the eleven structures under discussion. 
On the right of the table are the derivatives of the 
atomic position coordinates, modified by certain axial 
ratios that arise when Cartesian coordinates are in- 
volved, that correspond to the single independent 
component of inner compressibility belonging to each 
structure (except for iodine where two independent 
components occur). The allocation of coordinates in 
each structure can be found in Table 2 in C. 

The significance of the signs and magnitudes of the 
K ~ can be understood by considering the significance 
of the atomic position parameters. The observed 
values of the latter indicate positions in the unit cell 
where a specific atom finds a local minimum in the 
interaction potential due to all other atoms. If hydro- 
static pressure causes such local minima to shift rela- 
tive to one another then the associated inner com- 
pressibilities will be non-zero and will have signs 
corresponding to the directions of the shifts of minima 
in accordance with (11). If (6) is expanded fully it 
can be seen that inner compressibilities are linear 
combinations of the macroscopic linear compress- 
ibilities ki weighted by components of the internal 
strain. Thus 

Ki , '~kl  + A i 2 k 2 + A i 3 k 3 .  (12) 

From previous experience we expect the ,4~ com- 
ponents to be no larger than about 0.3 and hence 
anticipate that the K7 will be no larger than the 
largest of the linear compressibilities. 

2. Determination of the inner compressibility 

There are two methods that can be used: a simple 
one suitable for the structures discussed here and a 
general one applicable to any structure. 
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Table 1. Form of the inner compressibility tensors and 
the equivalent pressure derivative of the atomic 

coordinates 
E q u i v a l e n t  
e x p r e s s i o n  

f o r  t h e  
n o n - z e r o  

S t r u c t u r e  zr S y m m e t r y  F o r m  c o m p o n e n t %  

a -Uran ium I m 2 m  [0, K 2, 0]* 2 f l (dv /dp)  
Arsenic l 3m [0, 0, K3]* 2 5 ( d w / d p )  

Samar ium I 3m --- - 2 K  2 
C a d m i u m  chlor ide  2 3m [0, 0, K~] - ~ ( d w / d p )  

3 3m --- - K  2 

C a d m i u m  iodide  l 3m - = - 2 K  2 
2 am [0,0,  K~] - 3 , ( d w / d p )  
3 3m --- - K  2 

Selenium I m ± ( a l  +a2) K~[~3/2 ,  - 1 / 2 ,  0] 
2 m_l_aj [0, K~_, 0] x/3(du/dp)  

3 re±a2 K~[4'3/2, 1/2 ,0]  

Wurtzi te  I 6m2 -= 0 
Nickel  arsenide  2 3m [0, 0, K] ]  y ( d w / d p )  

3 6m2 -=0 
4 3m ---K 2 
5 3m -= K 2 
6 3m ---K 2 

Lead oxide  1 4ram = - - 2 K  2 
(G =- mm2) 2 G [0,0, g~]  - y ( d w / d p )  

/3-Neptunium 3 ~,m2 -= 0 
(G=- 2110x3) 4 G =- - K  2 

5 G =-K 2 
6 G ~ - K  2 

Iod ine /ga l l i um ' I m ±  Oxj =- K 4 -  K 2 
2 m 2 m  [0, K~,O] -2 /3 (du /dp )  
3 m i O x l  = - - ( K  + K  2) 
4 ram2 [0, 0, K~] 2"r(dw/dp) 
5 ram2 =- - K  4 
6 m 2 m  =- - K  2 

* Where the sole interlat t ice index is I it may be omit ted  without  ambigui ty .  
5"/3 and 3' denote  the zero-pressure  rat ios b / a  and c / a  in or thorhombic ,  

te t ragonal  or hexagonal  structures.  ~52 = (I + 2 cos a ) / 2 ( I  - cos a )  in rhom- 
bohedra l  structures.  

Expressions for F(H)2 (the zero-pressure value) 
and pdlF(H)12/dp can be taken directly from Tables 
6, 7 and 8 in C, since the second expression is formally 
identical to crdlF(H)12/dcr. Values of g~ can be taken 
from Tables 3, 4 and 5 in the same paper. If the 
reflection indices are hkl the Cartesian forms relevant 
to (14) are 

[hi, h 2 ,  h 3 ]  

[ h - k ,  h +k -a l ,  h +k +l] 
- ~3 2 3~ 

in rhombohedral structures 

h +2k, 1] 
= h, ~3 ~' in hexagonal structures 

[ _ k / ]  in orthorhombic structures = h,/3, 

= h, k, in tetragonal structures, 

where /3 and y are b/a and c/a ratios and 8 2= 
(1 +2 cos a ) /2 ( l  - c o s  a). 

2.2. General method 

In the general method, the structure of the crystal 
is determined at each of a number of pressures. At 
each pressure therefore a full set of atomic position 
coordinates is obtained. The pressure dependence of 
each of these is then found numerically and identifica- 
tions with the appropriate inner compressibility com- 
ponent are made via (l l). 

This method will be essential for any crystal with 
five or more atoms per lattice point. 

2.1. Simple method 

In the simple method the pressure dependence of 
the intensities of a few selected reflections are 
obtained and from them values of [dlF(H)i2/dp]p=O 
are deduced. Provided the crystal has not been com- 
pressed too greatly (so that the form factors change) 
the pressure derivatives are given by 

= - 2  g~(0, A) \  dp / sin X~t (13) 
\ dp /p=o 
on differentiating (l). The effect of inner compressibil- 
ity will be seen only in those reflections that make 
~ non-zero. From (7) we have 

d ~  _ ~ - -2~'[h,h2h3] '~ (14) 
dp p 

and it is clear that if K~ is sought then a reflection 
with hi # 0 must be observed. 

3. Illustrative examples 

There have not been very many determinations of the 
variation of atomic position coordinates with press- 
ure. An examination of the literature has revealed six 
elements for which adequate data are available. Three 
of these belong to a structure with two atoms per 
lattice point: arsenic, antimony and bismuth; two to 
a structure with three atoms: selenium and tellurium; 
and one, iodine, to a structure with four atoms per 
lattice point. 

3.1. Arsenic, antimony and bismuth 

These three elements were studied up to 3 kbar 
(0.3 GPa) by Morosin & Schirber (1969 for Sb and 
Bi, 1972 for As). Schirfel (1977) also studied antimony 
to 26 kbar (2.6 GPa). He found that dw/dp was linear 
over the whole range and in accord with the earlier 
measurements at lower pressure. The essential data 
for the evaluation of K 3 a r e :  rhombohedral angles 
54°10 ', 57°14 ' and 57°19 ' leading to 8 = 1.618, 1.808 
and 1.806. The values of dw/dp, assuming that the 
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variations for As and Bi are also linear, are 2.7(5), 
1.2(2) and 2.6(5) in units of TPa -~. Hence 

g 3 = 8 " 7 ( 1  "6)  T P a  - t  (As) 

K3 = 4.3(0.7)TPa -~ (Sb) 

and 

K3=9.4(1.8) TPa- '  (Bi). 

3.2. Selenium and tellurium 

Selenium has been studied twice. McCann & Cartz 
(1972) determined the structure at five pressures, 
including zero, up to 5.2 GPa. A least-squares fitting 
of a quadratic to these results yields du/dp= 
9.8 TPa -~. From this 

K~= 17.0TPa -l (Se). 

A later determination by Keller, Holzapfel & 
Schulz (1977) consisted of six sets of measurements 
at pressures up to 8.64 GPa, but excluding zero. A 
similar analysis yields du/dp = 10.1 TPa -t, whence 

K ] = 1 7 . 5 T P a '  (Se) 

in most satisfactory agreement. 
The same authors observed tellurium at ten press- 

ures up to 3.82 GPa. A value of du/dp = 8 .0TPa -~ 
was obtained and thus 

K~= 13-9TPa -I (Te). 

3.3. Iodine 

The principal investigation was undertaken by 
Shimomura, Takemura, Fujii, Minomura, Mori, 
Noda & Yamada (1978) and purported to extend to 
206 kbar (20.6 GPa). A later publication by a subset 
of the authors, Takemura, Fujii, Minomura & 
Shimomura (1979), suggests that the earlier value was 
too large by 20 to 30 kbar. The results of the earlier 
paper are here assumed to refer to a pressure of 
180 kbar. Relevant axial ratios are /3 =0.6567 and 
7 = 1.371. The values of dv/dp and dw/dp are 
2.22 TPa -j and 0.611 TPa -~ (assuming linear vari- 
ation which may well be unjustified). From these data 
it is found that 

K~ = -2 .92  TPa -~ 

and (I). 

K~= 1.68 TPa -I 

4. The internal strain tensors 

The ultimate goal in C was to provide sufficient infor- 
mation to make possible a determination of all the 
components of the internal strain tensors. Measure- 
ments made under hydrostatic pressure can be useful 
in support of such a goal but do not yield values of 
specific components. 

Putting the value for K { obtained above and linear 
compressibilities quoted by the authors, or implicit 
in their work, into (12) we have the following connec- 
tions between internal strain components. 

8.7 = 2"243, +23"9433 (As) 

4.3 = 8.8,g,31 + 15.9433 (Sb) 

9 .4=  13.643, + 18.7433 (Bi) 
-2  17.5 = 27.4(4~2~ + A22)- 6.6A223 (Se) 

13.9 = 25.1(4~1 + 4~2)-  4"24~3 (Te) 

and 
--2 - 2 " 9 2 =  10.64~, +8"8422 +4"0A23 

(I) 
1.68= 10.644, +8.8442 +4"04~3 

where factors of 10- '2pa - '  have been cancelled 
throughout and tolerances on the experimental values 
have been omitted. 

5. Concluding remarks 

A knowledge of the internal strain tensors possessed 
by a crystal is essential if the relative displacements 
of atoms within the unit cell under an arbitrary uni- 
form macroscopic strain are required. The com- 
ponents of these tensors are in principle most directly 
obtained by determining the change in structure fac- 
tors under uniaxial stress. In reality there are difficul- 
ties in this approach because dislocation movement 
may introduce uncertainty, and slip or cleavage may 
make some measurements impossible. Partial avoid- 
ance of these difficulties is possible in some cases by 
making measurements under hydrostatic pressure, in 
which case certain combinations of internal strain 
components, weighted by linear compressibilities, are 
found. These have been called inner compressibilities 
and have been shown to be equivalent to pressure 
derivatives of atomic position parameters, multiplied 
in some instances by appropriate axial ratios. This 
has been illustrated by reference to the six elements 
for which pressure-dependent structural data exist. 

Complementarily, if a theoretical model of atomic 
and electronic interactions exists for a particular 
crystal then the pressure dependence of the atomic 
position parameters may be obtained by applying the 
theory of inner elasticity. 

I am most grateful to Professor R. M. J. Cotterill 
and the Technical University of Denmark for a period 
as Guest Professor in the Department of Structural 
Properties of Materials. 
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Abstract 

In this paper is described the realization of an idea 
due to J. W. M. Dumond who, almost 50 years ago, 
suggested that Bragg diffraction peaks might be made 
narrower by multiple reflection [Dumond (1937). 
Phys. Rev. 52, 872-883]. The optical elements which 
result belong to a family of harmonic free mono- 
chromators, X-ray and neutron polarizers whose 
properties make feasible many new Bragg diffraction 
optical systems. 

Introduction 

Nearly fifty years ago Kirkpatrick first suggested that 
the intrinsic width of the Bragg reflection from perfect 
single crystals might be reduced by making several 
successive reflections from different crystals. Dumond 
(1937) took up the idea and investigated the 
possibilities theoretically. Although Dumond calcu- 
lated that a double Bragg reflection, successively from 
two calcite cleavage planes, could be used to reduce 
the width of the composite Bragg peak from 3½" to 
only 1¼" at 0.71/~ wavelength he stated that Bollmann, 
Bailey & Dumond (1938) found experimentally that 
the attainable narrowing was insignificant. Dumond 
(1937) approximated the shape ofthe Bragg reflection 
peak with a Lorentzian RL(y) = 1/(1 +y2), where y 
represents the angle of incidence, and went on to 
show that no useful narrowing of the Bragg peak 
could be expected. 

In this paper we show that Kirkpatrick's ideas can 
be successfully implemented with appropriate design 
and we demonstrate narrowing of the quadruply 
diffracted 422 rocking curve in silicon from 3.0" to 
only 0.8" at 1.54A wavelength. Two important 
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developments have made this work possible; ideally 
perfect crystals are now commercially available and 
the concept of monolithic construction with elastic 
adjustment Okkerse (1963) has been developed to 
achieve adequate stability and control in multiple 
Bragg reflection systems. 

Theoretical and experimental background 

Zero absorption approximation 

The original Kirkpatrick-Dumond idea is indicated 
in Fig. 1. Taking two identical crystals whose reflec- 
tivities are given by 

Re(y) = R,(y) = R2(y + A0)= Ilyl _(y2_  1)1/212 ' (1) 

R(AO) = RI(y)R2(y + AO), (2) 

the double reflectivity profile [R(A0) in Fig. 1] may 
have a much lower angular spread than the Bragg 
peaks of the individual single crystals. This is the 
'offset narrowing' concept which Kirkpatrick and 
Dumond proposed. 

Dumond (1937) noted, as Fig. l shows well, that 
as the composite Bragg peak is narrowed (so that A0 
approaches 2 on the y scale) a progressively larger 
fraction of the integrated intensity resides in the tails 
of the peak. The corresponding decrease in signal-to- 
noise ratio when the narrowed peak is used as a probe 
is most unhelpful. Dumond also reported that 'Boll- 
man and Bailey have found experimentally with three 
calcite crystals reflecting Mo K radiation on their 
cleavage planes and have subsequently verified by 
graphical integration with the theoretical diffraction 
patterns of Prins that the simple application of the 
principle of displaced superposition of diffraction 
patterns is not enough to give a "tool" adequate 
satisfactorily to reveal the Prins diffraction pattern of 
a third crystal' (Bollman, Bailey & Dumond, 1938). 
At long wavelengths, spectroscopists in the 1930's 
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